Understanding tDCS effects in schizophrenia: a systematic review of clinical data and an integrated computation modeling analysis

Andre Russowsky Brunoni*1,2, Pedro Shiozawa3, Dennis Truong4, Daniel C Javitt5, Hélio Elkis1, Felipe Fregni6 and Marom Bikson4

1Department and Institute of Psychiatry, University of São Paulo, São Paulo, Brazil
2Service of Interdisciplinary Neuromodulation (SRN) and Interdisciplinary Center for Applied Neuromodulation (CINA), University of São Paulo, São Paulo, Brazil
3Laboratory of Clinical Neuromodulation, Santa Casa Medical School, São Paulo, Brazil
4Department of Biomedical Engineering, The City College of New York (CCNY), The City University of New York (CUNY), NY, USA
5Division of Experimental Therapeutics, Department of Psychiatry, Columbia College of Physicians and Surgeons, NY, USA
6Laboratory of Neuromodulation, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA

*Author for correspondence: Tel.: +55 113 091 9241 Fax: +55 113 091 9241 brunoni@usp.br

Although recent clinical studies using transcranial direct current stimulation (tDCS) for schizophrenia showed encouraging results, several tDCS montages were employed and their current flow pattern has not been investigated. We performed a systematic review to identify clinical tDCS studies in schizophrenia. We then applied computer head modeling analysis for prediction of current flow. Out of 41 references, we identified 12 relevant studies. The most employed montage was anode and cathode over the left dorsolateral prefrontal and temporoparietal cortex, respectively. Computational model analysis predicted activation and under-activation under the anode and the cathode, respectively, occurring in areas respectively associated with negative and positive symptoms. We also identified tDCS-induced electrical currents in cortical areas between the electrodes (frontoparietal network) and, to a lesser extent, in deeper structures involved in schizophrenia pathophysiology. Mechanisms of tDCS effects in schizophrenia and the usefulness of computer modeling techniques for planning tDCS trials in schizophrenia are discussed.

KEYWORDS: auditory hallucinations • computer based modeling • non-invasive brain stimulation • schizophrenia • transcranial direct current stimulation

Schizophrenia is a common psychiatric disorder, with an overall prevalence of 0.5–1.5% and a chronic course through life [1]. Its symptoms can be grouped into three relatively distinct phenomenological presentations: positive symptoms (hallucinations and delusions); negative symptoms (impairment in sociability, emotional blunting and abulia); and cognitive dysfunction [2]. Positive symptoms often occur within the first 10–15 years of the disease, while negative and cognitive symptoms exhibit a more chronic, persistent, and sometimes, progressive presentation through life [3]. For this reason, patients with schizophrenia have, in general, low functionality in performing daily life activities, lower quality of life and greater incidence of comorbidities, such as depressive symptoms, substance-related disorders, suicidal behavior and cardiovascular risk [4].

Currently, several antipsychotics are available for schizophrenia treatment. According to a recent multiple-treatment meta-analysis that analyzed 212 controlled trials, clozapine is the most effective antipsychotic, displaying superior effect sizes than amisulpride, olanzapine, risperidone and others [6]. Nonetheless, the difference in efficacy between the three most effective drugs is small, and therefore, clozapine use should outweigh its common adverse effects such as weight gain and sedation [6] as well as its rarer albeit severer effects such as neutropenia and agranulocytosis [7,8]. In fact, clozapine is the first-line drug for patients with treatment-resistant schizophrenia, that is, after failure of two adequate antipsychotic trials, as well as for patients with suicidality [9,10]. In addition, up to 30% of patients under treatment with clozapine respond partially and are called super-refractory or resistant to clozapine [7,10]. In such cases, there are two main alternatives: combination therapy with other pharmacological agents (e.g.,
lamotrigine, lithium, and topiramate) – this approach has limited evidence and in fact may also increase drug-related adverse effects – and non-pharmacological therapies, for instance, electroconvulsive therapy particularly for catatonia and repetitive transcranial magnetic stimulation (rTMS) particularly for persistent auditory hallucinations [9,10]. Evidence is also limited for non-pharmacological therapies; however, recent rTMS meta-analyses have shown promising results for auditory verbal hallucinations [11] and negative symptoms [12].

In the past decade, transcranial direct current stimulation (tDCS) is another non-pharmacological intervention that has shown promising results in several neuropsychiatric disorders [13]. This technique is based on the induction of a weak, direct current that flows from the anode to the cathode. These electrodes are placed over the scalp, with the goal of, respectively, increasing and decreasing cortical excitability [14]. In fact, such effects were observed mainly from studies evaluating motor cortex excitability. These effects of tDCS on the motor cortex may not translate to other cortical areas [15]. In addition, the effects of tDCS are likely modified by other factors such as stimulation intensity or nature of ongoing activity [16]. Although the exact mechanisms of action of tDCS are still being investigated, tDCS produces low-intensity electric field ($<$1 V/m) [17] in the brain, leading to small changes ($<$1 mV) [18] in the membrane potential, thus influencing the frequency of spike timing and modifying net cortical excitability [19].

Plastic changes by tDCS are presumed to occur at the synaptic level. For instance, NMDA-antagonist drugs abolish tDCS aftereffects, while NMDA agonists enhance such effects [20]. In addition, in an experimental animal study, Fritsch et al. [22] also demonstrated that DCS promotes brain-derived neurotrophic (BDNF)-dependent synaptic plasticity. This is important because BDNF is associated with synaptic plasticity and its dysfunction is associated with several neuropsychiatric disorders, including schizophrenia [23]. In fact, experimental studies have suggested that schizophrenia is associated with reduced neuroplasticity [24]. Finally, the clinical effects of tDCS are also enhanced when associated with serotoninergic drugs and decreased with benzodiazepines [25,26].

In the clinical setting, tDCS is comparable to rTMS as both are non-invasive, relatively focal brain stimulation techniques that ameliorate clinical symptoms by inducing cortical excitability changes inasmuch as rTMS is already used in clinical settings, whereas tDCS studies are Phase II and III yet. Nonetheless, tDCS could theoretically have some advantages over rTMS such as lower cost – rTMS devices are more expensive to purchase and maintain than tDCS devices [27]; ease of use – rTMS requires more training for use than tDCS as tDCS can be applied by technicians whereas rTMS can only be applied by trained physicians and, further, optimal rTMS results usually require neuroimaging guidance [28] and electromyography devices for motor threshold determination [29]; portability – tDCS devices are portable and could be potentially used in primary care and even home use and safety and tolerability – direct tDCS effects are mild and well-tolerated [30], whereas direct rTMS effects cause facial twitching that can be unpleasant; in addition, rTMS can rarely induce seizures [31], whereas this severe adverse effect was not ever described for tDCS.

For these reasons, tDCS has gained increased interest in clinical psychiatry over the past decade. The purpose of this review is to summarize the recent advancements of tDCS as a therapy for schizophrenia as well as to discuss its underlying pathophysiological mechanisms and perspectives in the field. We therefore performed a systematic review of all available clinical reports using tDCS as a therapy for schizophrenia. In this context, we also used a high-resolution MRI-derived computer head model to predict the intensity of current flow through the brain using the different electrode montages evaluated in the revised articles. The significance of this overall approach lies in the combination of clinical outcomes with computer models to investigate the mechanisms of action of tDCS in schizophrenia.

Methods

Systematic review

A systematic review was conducted for articles published from the first data available to 1 March 2014 in the following databases: Medline, Scopus, Web of Science and Google Scholar.

The following search strategy was used in MEDLINE in three steps:

- to identify tDCS-relevant articles – we used the keywords ‘transcranial direct current stimulation’ OR ‘tDCS’ OR ‘brain polarization’ OR ‘galvanic stimulation’ OR ‘DC stimulation’. This search yielded 1667 references.
- to identify schizophrenia-relevant articles – we used the keywords ‘schizophrenia’ OR ‘psychosis’. This search yielded 122,187 references.
- After that, these terms (from first and second steps) were searched together using the Boolean terms ‘AND’. We then identified 41 references.

We also looked for articles in the reference lists of retrieved articles and contacted experts in the field for additional articles.

We excluded review studies, editorials and studies investigating other techniques – for instance, a study investigating the clinical effects of transcranial random noise stimulation in schizophrenia [32]. We also excluded preclinical (animal) studies. Therefore, we included all articles that evaluated tDCS use in humans, regardless of its design (i.e., from case reports to randomized clinical trials [RCTs]).

From each retrieved article, we extracted data regarding demographic and clinical characteristics (such as sample size, age, gender); characteristics of the stimulation (anode and cathode positioning, intensity, duration of stimulation, number of sessions); assessment of schizophrenia, including methods for diagnosing and measuring severity and outcomes, describing each study main results. Anticipating that the number of studies would be heterogeneous and low, we did not plan quantitative analyses, that is, meta-analysis and techniques of meta-regression.

Computational modeling

Finite element method models of two commonly used tDCS montages for schizophrenia were created from a previously segmented adult male based on a T1 MRI scan with a 1 mm
isotropic resolution \([33]\). Models of sponges and electrodes \((5 \times 7 \text{ cm})\) were positioned and resampled into the image volume before a voxel-based volumetric mesh was generated using ScanCAD and ScanIP (Simpleware Ltd., Exeter, UK). This mesh was imported into a FEM solver (COMSOL 3.5a, Dassault Systèmes Corp., Waltham, MA, USA) modeling electrostatic physics. One of nine conductivities were assigned to the various materials: skin \((0.465 \text{ S/m})\), fat \((0.0255 \text{ S/m})\), skull \((0.015 \text{ S/m})\), cerebrospinal fluid \((1.655 \text{ S/m})\), gray matter \((0.276 \text{ S/m})\), white matter \((0.126 \text{ S/m})\), air \((1 \times 10^{-6} \text{ S/m})\), skull \((0.01 \text{ S/m})\), cerebrospinal fluid \((1.65 \text{ S/m})\), during a corollary discharge paradigm, a neurophysiological test that is abnormal in patients with schizophrenia.

Results

Overview

Our search criteria yielded 41 references. Of those, 11 references were selected according to the eligibility criteria. Since Mattai et al. \([36]\) reported two RCTs; we reviewed 12 studies – three RCTs, one case series and eight case reports, as described below. \((\text{SUPPLEMENTARY MATERIAL})\) [supplementary material can be found online at www.informahealthcare.com supp/10.1586/17434440.2014.911082] and Table 1

Randomized clinical trials

Brunelin et al. \([37]\) investigated tDCS for the treatment of auditory hallucinations in schizophrenia by randomizing

30 patients with persistent auditory hallucinations to receive either active or sham tDCS. The cathode was placed on the left temporoparietal region and the anode on the left dorsolateral prefrontal cortex (DLPFC). The rationale was to simultaneously perform an inhibitory stimulation over the area related to positive symptoms and an excitatory stimulation over the area correlated with negative symptoms. tDCS was applied twice daily for 5 days. The authors showed an important, large effect in terms of improvement of auditory hallucinations after the end of stimulation, with sustained clinical response after 1 and 3 months of treatment. The results were also large and significant for the improvement of negative symptoms.

Mattai et al. \([36]\) investigated the safety and tolerability of tDCS in childhood-onset schizophrenia in 12 adolescent \((10-17 \text{ years})\) patients. Two double-blinded, randomized, sham-controlled trials were carried out with different tDCS setups (bilateral anodal prefrontal stimulation for cognitive improvement and bilateral cathodal temporoparietal stimulation for hallucinatory control, both with an extra-cephalic reference). The treatment was well tolerated with mild adverse effects such as tingling, itching and fatigue sensation that, although frequent \((30-50\%)\), presented similar rates in both active and sham groups. The authors did not report clinical outcomes.

Case series

Nawani et al. \([38]\) investigated the clinical and neurophysiological effects of tDCS (anode over the left DLPFC, cathode over the left temporoparietal region) in five patients with refractory auditory verbal hallucinations. After 5 days of tDCS performed twice daily, there was a significant improvement in these symptoms. Moreover, the authors found that tDCS induced a modulation of the evoked related potential N100 that was tested during a corollary discharge paradigm, a neurophysiological test that is abnormal in patients with schizophrenia.

Case reports

Homan et al. \([39]\) described a patient with refractory auditory verbal hallucinations who underwent tDCS treatment, with the cathode positioned over the ‘Wernicke area’ (left temporoparietal cortex) and the anode over the right supraorbital cortex. After 10 consecutive daily sessions of 1 mA/20 min of stimulation, the patient improved not only in positive, but also negative and global symptoms. This was also accompanied by regional decreasing of cerebral blood flow indexed by arterial spin labeling. In another report, Rakesh et al. \([40]\) used tDCS in monotherapy to treat a full-blown paranoid schizophrenia in an outpatient basis. The cathode was positioned over the left temporoparietal junction and the anode over the left DLPFC; tDCS was applied twice daily at 2 mA/20 min for 5 consecutive days. The authors reported full cessation of verbal hallucinations.

Nawani et al. \([41]\); and Shivakumar et al. \([42]\) used similar treatment protocols (5 days of tDCS, two sessions per day, with cathode over the left temporoparietal junction and the anode over the left DLPFC, describing improvement in auditory hallucinations). Particularly in the report of Shivakumar et al. \([42]\), the patient presented complete cessation of hallucinations after 5 days of tDCS, effects that persisted over 4 weeks.

Shiozawa and colleagues explored tDCS in severe forms of schizophrenia in two case reports. In one case \([43]\), tDCS (anode over the left and cathode over the right DLPFC, 2 mA/20 min, 10 consecutive sessions) was used to treat a severe catatonic, schizophrenic patient refractory to clozapine and electroconvulsotherapy. Improvement was remarkable, with virtually full remission of cataonia after 30-60 days of tDCS onset. In another study, Shiozawa et al. \([44]\) used cathodal stimulation consecutively over the occipital cortex and the temporoparietal cortex (anode over the left DLPFC) to treat visual and auditory hallucinations, with partial response that nevertheless enhanced global functioning.

Palm et al. \([45]\) performed tDCS (anode over the left DLPFC, cathode over the right supraorbital area) in a 19-year-old patient with paranoid, treatment-resistant schizophrenia, observing a global improvement of symptoms after 10 sessions of tDCS. The authors also found changes in functional connectivity after tDCS, with reduced functional connectivity in the anterior part of the default-mode network, which might be biologically related to the improvement of depressive and negative symptoms.

The Andrade study \([46]\) explored the long-term use of tDCS (cathode over the left temporoparietal cortex, anode over the left DLPFC), with once- to twice-daily tDCS sessions for
<table>
<thead>
<tr>
<th>Study (year)</th>
<th>Design</th>
<th>Sample size</th>
<th>Mean age</th>
<th>Sex</th>
<th>Diagnosis assessment</th>
<th>Main results</th>
<th>Follow-up</th>
<th>mA</th>
<th>min</th>
<th>Days</th>
<th>Anode</th>
<th>Cathode</th>
<th>Reported adverse effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shiozawa et al. (2013)</td>
<td>Case report</td>
<td>1</td>
<td>31</td>
<td>M</td>
<td>PANSS</td>
<td>VH/AH improvement</td>
<td>1 month</td>
<td>2</td>
<td>20</td>
<td>20</td>
<td>F3</td>
<td>T3P3 and Oz</td>
<td>None</td>
</tr>
<tr>
<td>Shiozawa et al. (2013)</td>
<td>Case report</td>
<td>1</td>
<td>65</td>
<td>F</td>
<td>Bush–Francis Scale</td>
<td>Catatonia improvement</td>
<td>4 months</td>
<td>2</td>
<td>20</td>
<td>10</td>
<td>F3</td>
<td>F4</td>
<td>None</td>
</tr>
<tr>
<td>Andrade (2013)</td>
<td>Case report</td>
<td>1</td>
<td>24</td>
<td>F</td>
<td>Clinical</td>
<td>Long-term improvement</td>
<td>36 months</td>
<td>1–3</td>
<td>20–30</td>
<td>3 years</td>
<td>F3</td>
<td>T3P3</td>
<td>Tingling</td>
</tr>
<tr>
<td>Rakesh et al. (2013)</td>
<td>Case report</td>
<td>1</td>
<td>24</td>
<td>M</td>
<td>AHRS</td>
<td>AH improvement</td>
<td>5 days</td>
<td>2</td>
<td>20</td>
<td>5</td>
<td>Between F3 and F4</td>
<td>T3P3</td>
<td>None</td>
</tr>
<tr>
<td>Homan et al. (2011)</td>
<td>Case report</td>
<td>1</td>
<td>44</td>
<td>M</td>
<td>AHRS/PANSS</td>
<td>AH improvement</td>
<td>10 days</td>
<td>1</td>
<td>15</td>
<td>10</td>
<td>Right SO</td>
<td>“Wernicke’s area”</td>
<td>None</td>
</tr>
<tr>
<td>Shivakumar et al. (2013)</td>
<td>Case report</td>
<td>1</td>
<td>28</td>
<td>F</td>
<td>AHRS</td>
<td>AH improvement</td>
<td>4 weeks</td>
<td>2</td>
<td>20</td>
<td>5</td>
<td>Between F3 and FP1</td>
<td>T3P3</td>
<td>None</td>
</tr>
<tr>
<td>Nawani et al. (2014)</td>
<td>Case report</td>
<td>1</td>
<td>31</td>
<td>M</td>
<td>AHRS</td>
<td>AH improvement</td>
<td>5 days</td>
<td>2</td>
<td>20</td>
<td>5</td>
<td>F3</td>
<td>T3P3</td>
<td>None</td>
</tr>
<tr>
<td>Palm et al. (2013)</td>
<td>Case report</td>
<td>1</td>
<td>19</td>
<td>M</td>
<td>PANSS</td>
<td>Global improvement</td>
<td>2 weeks</td>
<td>2</td>
<td>20</td>
<td>10</td>
<td>F3</td>
<td>RSO</td>
<td>Not reported</td>
</tr>
<tr>
<td>Nawani et al. (2014)</td>
<td>Case series</td>
<td>5</td>
<td>33.2</td>
<td>60% F</td>
<td>AHRS</td>
<td>AH improvement</td>
<td>5 days</td>
<td>2</td>
<td>20</td>
<td>5</td>
<td>F3</td>
<td>T3P3</td>
<td>None</td>
</tr>
<tr>
<td>Brunelin et al. (2012)</td>
<td>RCT</td>
<td>30</td>
<td>37.7</td>
<td>26.6% F</td>
<td>Clinical/PANSS</td>
<td>Global improvement</td>
<td>3 months</td>
<td>2</td>
<td>20</td>
<td>5</td>
<td>Between F3 and FP1</td>
<td>T3P3</td>
<td>Tingling</td>
</tr>
<tr>
<td>Mattai et al. (2011)</td>
<td>RCT</td>
<td>8</td>
<td>15.6</td>
<td>40% F</td>
<td>Clinical/SAPS</td>
<td>Safety/ tolerability</td>
<td>2 weeks</td>
<td>2</td>
<td>20</td>
<td>10</td>
<td>See text</td>
<td>Tingling, itching, fatigue</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RCT</td>
<td>5</td>
<td>15.4</td>
<td>58.3% F</td>
<td>Clinical/SAPS</td>
<td>Safety/ tolerability</td>
<td>2 weeks</td>
<td>2</td>
<td>20</td>
<td>10</td>
<td>See text</td>
<td>Tingling, itching, fatigue</td>
<td></td>
</tr>
</tbody>
</table>

AH: Auditory hallucinations; AHRS: Auditory hallucination rating scale; F: Female; F3: Left dorsolateral prefrontal cortex; M: Male; PANSS: The Positive and Negative Syndrome Scale; RCT: Randomized clinical trial; SAPS: Schedule for the Assessment of Positive Symptoms; T3P3: Left temporoparietal area; VH: Visual hallucinations.
nearly 3 years, with sustained improvement, in a clozapine-refractory patient with schizophrenia. Interestingly, when the sessions were performed in alternate days, the benefits attenuated or were lost.

Computer head modeling

We predicted current flow based on two commonly employed montages: anode over the left DLPFC and cathode over the left temporoparietal junction or the occipital cortex (Figure 1). The current intensity used was 2 mA, as employed in almost all reviewed trials.

Consistent with previous modeling studies using other pad-based tDCS montages, stimulation produces relatively diffuse current flow under and between the electrodes, that is, between the temporoparietal (or occipital) cortex and the DLPFC. Current density is maximal (0.21 A/m² at 0.77 V/m) at the cortex but also reaches deeper brain structures (such as the basal ganglia, the hippocampus, the insula and the cingulate cortex) in a montage-specific manner (Figure 1, rows D and E). A role for concurrent neuromodulation of deeper structures thus becomes feasible and evidence for modulation of at least hippocampal excitability by direct current exists from animals [47].

In addition to (directionless) electric field magnitude (Figure 1A), we also predicted current flow normal to the cortical surface (i.e., inward and outward relative to the cortical sheet; Figure 1B) and current flow tangential to the cortical surface (i.e., along the cortical sheet, Figure 1C).

Inward current flow (induced by the anode) is associated with pyramidal neuron somatic depolarization and therefore increased excitability, while outward current flow (induced by the cathode) is associated with pyramidal neuron somatic hyperpolarization and therefore deceased excitability [15,18].

Regions of presumed excitation/inhibition are predicted under the electrodes (i.e., excitability increasing over the left DLPFC and decreasing over the left temporoparietal cortex or the occipital cortex); however due to idiosyncratic cortical folding, alternating regions of presumed excitation/inhibition are also observed between electrodes.

Tangential current (Figure 1C) is predicted between electrodes (as current flow across the brain), the role of which in synaptic modulation (connectivity) remains under investigation, although probably it translates into synaptic strengthening [15].

Discussion

In this systematic review, we identified three randomized, sham-controlled clinical trials (although only one trial reporting efficacy data that enrolled 30 patients), one case series and eight case reports investigating the use of tDCS – an affordable, easy-to-use and portable device – for the treatment of schizophrenia. All clinical studies reported improvement of symptoms and were primarily focused in auditory hallucinations, although improvement of negative symptoms was also reported. Effects were relatively long-lasting, with maintained improvement of more than 6 weeks after 5–10 consecutive daily sessions. Side effects were low, and tDCS was well tolerated even in a case report when daily sessions were applied for almost 3 years. The main tDCS setup used was anode over the left DLPFC and cathode over the left temporoparietal cortex, inspired by findings from neuroimaging studies and results from rTMS trials. In addition, MRI-derived computer models predicted current flow between the left DLPFC and the left temporoparietal cortex or the occipital cortex, particularly corroborating the rationale excitability decreasing over the cathode and increasing over the anode, but also revealing that current flows normal to these cortical regions (therefore inducing changes in cortical excitability) and also tangential to these regions, leading to synaptic strengthening. Finally, the computer models predicted that, with the commonly used tDCS setups, current also reaches deep brain structures involved in the pathophysiology of schizophrenia. These findings are discussed below.

All reviewed studies, except for Homan et al. [39], and one of the trials of Mattai et al. [36] performed anodal stimulation over the left DLPFC, aiming to increase regional cortical excitability of this area, which is associated with negative/cognitive impairment in schizophrenia. This is in line with several neuroimaging studies, which have revealed that schizophrenia is associated with gray matter reductions in the prefrontal cortex and white matter integrity changes in the deep frontal and temporal regions [48–50], whereas functional neuroimaging studies showed reduced DLPFC activation during working memory tasks in these patients [51,52]. In fact, even during rest, hypoactivity of the prefrontal cortex is observed [53]. Another line of evidence for DLPFC stimulation derives from rTMS clinical trials, which at first yielded mixed findings [54], although more recent meta-analyses showed that high-frequency rTMS was effective in the treatment of negative symptoms, especially when using a frequency of stimulation of 10 Hz and/or in studies with longer duration [55]. Finally, rTMS/tDCS studies observed working memory improvement in healthy subjects [56] and also in patients with DLPFC dysfunction such as major depression [57] and schizophrenia [58].

In most reviewed studies, including the RCT of Brunelin et al. [37], the cathode was applied over the left temporoparietal cortex, which was associated with amelioration of auditory hallucinations. This is in line with findings from rTMS, as low-frequency, inhibitory rTMS is applied over this region to effectively treat auditory hallucinations as demonstrated by recent several meta-analyses [54,55,60]. Neuroimaging studies also point out that the left temporal cortex is critical in the pathophysiology of positive symptoms [61], with activation of a specific left temporal area – the Heschl’s gyrus – during auditory hallucinations [62]. Interestingly, the right temporal cortex does not seem to be overactive during auditory hallucinations [63], although both temporal lobe volumes are smaller in patients with schizophrenia versus controls [64].

Shiozawa et al. [44] also used, in a single report, cathodal stimulation over the occipital cortex for ameliorating visual hallucinations. The pathophysiology of this symptom – which has, in fact, high prevalence in chronic patients with schizophrenia [65] but is
Figure 1. High-resolution computational models predict current flow during tDCS based on two commonly employed montages: anode over the left DLPFC and cathode over the left temporoparietal junction (left) or the occipital cortex (right). Rows describe (A) electric field magnitude, (B) electric field normal to the cortical surface, (C) electric field tangential to the cortical surface and (D and E) electric field in deeper cortical structures. DLPFC: Dorsolateral prefrontal cortex; TPJ: Temporoparietal junction.
also found in other psychiatric and neurologic disorders." Regarding tDCS, there are only two case reports using low-frequency rTMS over the occipital cortex (localized using anatomical references and functional neuroimaging), both describing amelioration of the visual symptoms.

A case report also described tDCS for the treatment of catatonia-related schizophrenia. The prefrontal cortex seems to play a critical role in catatonia according to neuroimaging studies and the observation that benzodiazepines might treat some catatonic symptoms by activating GABAergic neurons of this area. Interestingly, the few rTMS cases for catatonia have also targeted the prefrontal areas, suggesting that this might be a suitable area for catatonia treatment, especially in the context of schizophrenia.

Regarding adverse effects, the reviewed studies described only mild adverse effects (with similar frequency in active vs sham groups) associated to tDCS such as tingling, itching and fatigue, similarly as observed in literature, thus demonstrating that tDCS was well tolerated also for patients with schizophrenia. Particularly, Andrade performed, over a period of almost 3 years, once- to twice-daily tDCS sessions, describing only mild adverse effects during the entire treatment course.

Considering the time length of clinical benefits induced by tDCS, the RCT of Brunelin and colleagues observed that the effects of tDCS persisted 3 months after the application of five consecutive tDCS sessions. In addition, the case reports of Homan et al. and Shiozawa et al. reported long-lasting effects for 6 weeks to 4 months after 5–10 daily tDCS sessions. These studies suggest that even a relatively short course of tDCS sessions can induce relatively long-lasting clinical effects for both positive and negative effects. Conversely, Andrade observed rapid deterioration of symptoms when the frequency of sessions (once- to twice-daily) was decreased. Due to the paucity of data, more trials are necessary to determine the predictors of maintained response for tDCS in schizophrenia.

Limitations

The present review has some limitations. First, most studies reviewed were case reports; therefore some of the clinical benefits could have occurred due to a placebo effect. Case reports are also particularly prone to publication bias, as negative findings are less likely to be published for this type of study. Nonetheless, we included these studies in our systematic review, considering that they are hypothesis-driven for further controlled trials and, although not providing robust evidence regarding tDCS effectiveness in schizophrenia, their findings are useful for designing future studies. We also included these studies considering one of our review aims that were to summarize available data to further perform computer modeling analyses.

Another limitation is that our tDCS computer modeling is not patient specific, and therefore the precise distribution of current flow is determined by individual idiosyncratic anatomy. Still, our aim was to verify whether the general assumptions regarding electrode positioning in schizophrenia would be corroborated in computer models.

Finally, much of the knowledge regarding the physiological basis of tDCS derives from within-subjects, single-session studies performed in healthy volunteers in whom the electrodes were placed over the motor cortex (for a review see Stagg and Nitsche) – thus, it is unclear to what extent findings originated from these studies are transferable to other cortical areas, such as the left DLPFC and temporoparietal cortex, and to patients with neuropsychiatric disorders. For instance, Jacobson et al. found, in a meta-analytic review, that the anodal-excitation/cathodal-inhibition effects of tDCS were generally found in neurophysiological studies evaluating motor areas, although the cathodal-inhibition effects were not ubiquitously observed in cognitive studies evaluating non-motor areas, possibly due to compensatory processes as complex cognitive functions are supported by wider brain networks. In fact, this notion reinforces the role of computational modeling and mechanistic studies when investigating non-motor montages and/or complex neuropsychiatric disorders such as schizophrenia.

Schizophrenia as a dysconnectivity disorder: the role of tDCS

Although the reviewed studies provide a useful framework indicating that cathodal stimulation would hyperpolarize the temporal cortex, inhibiting the auditory hallucinations, whereas anodal stimulation would increase DLPFC activity, ameliorating negative and cognitive symptoms, it should be noted that schizophrenia involves additional brain regions and the observation that benzodiazepines might treat some catatonic symptoms by activating GABAergic neurons of this area may not necessarily extrapolate to other cortical areas, such as the left DLPFC and temporoparietal cortex, and to patients with neuropsychiatric disorders. For instance, Jacobson et al. found, in a meta-analytic review, that the anodal-excitation/cathodal-inhibition effects of tDCS were generally found in neurophysiological studies evaluating motor areas, although the cathodal-inhibition effects were not ubiquitously observed in cognitive studies evaluating non-motor areas, possibly due to compensatory processes as complex cognitive functions are supported by wider brain networks. In fact, this notion reinforces the role of computational modeling and mechanistic studies when investigating non-motor montages and/or complex neuropsychiatric disorders such as schizophrenia.

In turn, hypo- and hyperpolarizing tDCS effects occur in different cell elements (e.g., soma, dendrites and axons) regardless of the type of stimulation and mainly dependent on the angle of the axis vis-à-vis electrode positioning – for current flow normal to the cortical surface, pyramidal neurons would be polarized (current flow parallel to the somatodendritic access), but for current flow tangential (along) the cortical surface afferent synaptic pathways would be polarized. Whereas the radial current flow is consistent with local changes in...
excitability, tangential flow implies changes in connectivity [15]. This implies that the tDCS montage mostly used for schizophrenia presents effects that occur in the frontoparietal network, not only leading to activation in the frontal areas and underactivation in the temporal areas but also to changes in synaptic connectivity in this network. In addition, while tDCS is often assumed to affect superficial cortical regions, reduced current intensities are evident in deeper structures. While the role of this deeper current flow in neurophysiological changes is not clear, they are implicated in the pathophysiological mechanisms of schizophrenia, and therefore part of the tDCS effects clinically observed could have occurred due to the modulation of these areas.

The two mechanisms hereby observed — local excitability changes by radial currents and synaptic changes induced by tangential currents — are also observed in in vitro and in vivo animal studies assessing tDCS mechanisms. The polarity-dependent effects of radial DCS has been observed in earlier animal studies [19,85,86], which is consistent with somatic membrane polarization by radial cortical electric current flow [15,18]. In fact, Rahman et al. [15] demonstrated, using rat cortical slices, that purely inward currents (relative to the cortical surface, without a tangential component) induced polarity-dependent changes in membrane excitability — that is, anodal DC facilitated and cathodal DC inhibited synaptic efficacy.

Notwithstanding, tDCS also generates tangential fields, which are in fact larger than the radial fields [15]. Although tangential fields do not polarize the somatic neuronal component [18,37], it influences axons and synaptic terminals [88]. Rahman et al. [15] also demonstrated that the direction of terminal polarization depends on the morphology of the afferent pathway. This finding, observed in vitro, should be further addressed in complex cortical structures with several types and morphologies of neurons. This means that the direction of the effects of tangential fields on synaptic efficacy, although not negligible, is not easily predictable and warrants further investigation.

Neurobiological aspects

The clinical effects of tDCS in schizophrenia can also be conceptualized in a neurobiological level, as tDCS influences the two basic mechanisms of synaptic plasticity, namely long-term depression (LTD) and long-term potentiation (LTP).

Fritsch et al. [22] showed that anodal DCS over mouse M1 slices induces a long-lasting LTP mechanism, which is polarity- and NMDA-dependent. Moreover, this finding was not observed in mutant mice knocked-out for TrkB (BDNF receptor) and motor skill acquisition was impaired when the BDNF Val66Met polymorphism was present, suggesting that BDNF has a key role in this phenomenon. In another study, Ranieri et al. [89] further investigated the effects of anodal and cathodal DCS in the synapses between the CA3 and CA1 regions of the hippocampus (a well-studied model of synaptic plasticity). They found that anodal DC stimulation increased LTP, whereas cathodal stimulation reduced it.

Both LTP and LTD mechanisms are abnormal in schizophrenia. Hasan et al. [90] evaluated whether cathodal tDCS decreased motor cortical excitability in schizophrenia, compared to matched controls and in accordance with previous reports on healthy individuals [14]. They found that cathodal tDCS failed to decrease cortical excitability and also increase GABAergic and glutamatergic activity, which could be compensatory mechanisms to the abolished LTD-like plasticity. Also, Hasan et al. [91] found that patients with multiple psychotic episodes presented a significant deficient LTP-like plasticity, as significantly lower motor evoked potentials were elicited after anodal tDCS in this group, compared to healthy controls and patients with recent-onset schizophrenia.

In this context, the findings of our review suggested that cathodal tDCS over the temporoparietal area might have induced LTD-like phenomena, due to the decrease in auditory hallucinations, whereas anodal tDCS over the left DLPFC could have induced LTP-like phenomena, as some studies identified an improvement in negative symptoms. Although in apparent contrast with previous studies, it should be emphasized that tDCS clinical studies placed the electrodes in non-motor areas, and performed daily tDCS for several days.

Final remarks

The RCT, the case series and several case reports included in this systematic review positioned the anode over the left DLPFC and the cathode over the left temporoparietal area (based on hypoactivity and hyperactivity of these brain areas in schizophrenia, respectively), observing ameliorating of auditory hallucinations and, in some studies, improvement in negative symptoms as well. Computer models predicted underactivation and activation over the cathode and the anode, respectively, and also activation of cortical regions between these areas and, to a lesser extent, neuromodulation of deeper brain structures. Therefore, tDCS, by simultaneously modulating two distinct brain areas as well as connectivity between temporoparietal and prefrontal regions, might be an interesting neuromodulatory treatment tool for schizophrenia, a disorder in which dysconnectivity between several brain areas is observed. Further, the use of computer modeling techniques provides a framework to be applied in future studies exploring different tDCS montages in the treatment of positive and negative symptoms of schizophrenia.

Expert commentary

tDCS is a relatively novel non-pharmacological intervention that has been increasingly investigated in the treatment of mental disorders. tDCS has important advantages over other brain stimulation interventions, such as ease of use, portability, low cost and a benign profile of adverse effects. Its mechanisms of action in complex brain disorders, such as schizophrenia, are still elusive. We here reviewed the use of computed head modeling analysis to predict electric flow between electrodes according to the most commonly employed montages in schizophrenia. We identified that this computer simulation model is able to predict electric flow in several cortical and subcortical brain areas, aiding in the interpretation of clinical outcomes derived from RCTs. The use of computational
models of brain current flow can be also helpful in planning novel tDCS clinical trials in schizophrenia and other mental disorders.

Five-year view

Computational models of brain current flow are already being increasingly used to understand and optimize tDCS clinical trials. They might prove particularly useful for complex mental disorders that present functional impairment in several brain areas as to predict optimal positioning of the anode(s) and cathode(s) electrodes over the head. In 5 years, whether the use of these computational models becomes more readily accessible to clinical researchers (perhaps through open-source or web-based softwares), these tools will be broadly used in the design of tDCS trials. In addition, given the results presented in this study, we expect that tDCS will be increasingly used and tested for the treatment of schizophrenia.

Key issues

- Transcranial direct current stimulation (tDCS) is a non-pharmacological intervention that changes cortical excitability according to the parameters of stimulation. It has been increasingly used in the treatment of mental disorders, such as major depression and schizophrenia.

- An important question is to determine optimal anode (excitability-increasing) and cathode (excitability-decreasing) positioning. tDCS trials determine electrode positioning according to neuroimaging findings regarding brain activity, although this approach might be difficult to apply in complex mental disorders such as schizophrenia.

- We performed a systematic review of all clinical studies using tDCS for the treatment of schizophrenia. Based on these studies, we identified the tDCS montages mostly used in these studies and thereafter performed computer head modeling simulation to predict electric flow between electrodes.

- Predicted current flow between these areas corroborated the rationale excitability decreasing over the cathode and increasing over the anode, but also revealed that current flows normal to these cortical regions (therefore inducing changes in cortical excitability) and also tangential to these regions, leading to synaptic strengthening. Current also reaches the deep brain structures involved in the pathophysiology of schizophrenia.

- tDCS, by simultaneously modulating two distinct brain areas as well as connectivity between temporoparietal and prefrontal regions, might be an interesting neuromodulatory treatment tool for schizophrenia, a disorder in which dysconnectivity between several brain areas is observed.

- In addition, the use of computer modeling techniques provides a framework to be applied in future studies exploring different tDCS montages in the treatment of positive and negative symptoms of schizophrenia and also in other mental disorders.

References

in schizophrenia: a case study. Brain Stimul 2013;6(3):831-3
46. Andrade C. Once-to twice-daily, 3-year domiciliary maintenance transcranial direct current stimulation for severe, disabling, clozapine-refractory continuous auditory hallucinations in schizophrenia. J ECT 2013;29(1):e1054-8
49. van Haren NE, Schnack HG, Cahn W, et al. Changes in cortical thickness during the course of illness in schizophrenia. Arch Gen Psychiatry 2011;68(9):871-80
50. Ellison-Wright I, Bullmore E. Meta-analysis of diffusion tensor imaging studies in schizophrenia. Schizophr Res 2009;108(1-3):3-10
54. Freitas C, Fregni F, Pascual-Leone A. Meta-analysis of the effects of repetitive transcranial magnetic stimulation (rTMS) on positive and negative symptoms in schizophrenia. Schizophr Res 2009;108(1-3):11-24
69. Meppelink AM, de Jong BM, van der Hoeven JH, van Laar T. Lasting visual hallucinations in visual deprivation; fMRI correlates and the influence of rTMS. J Neurol Neurosurg Psychiatry 2010;81(11):1295-6