Electroencephalography (TMS-EEG), which can provide information on local and global functional reactivity. The current study used TMS-EEG to characterise the differences in neural plasticity responses, and its relation to cognitive performance in younger, older and MCI participants.

Methods: 20 healthy younger adults, 20 healthy older adults and 9 individuals with MCI participated in the study. All completed a neuropsychological battery, computerised cognitive tasks (n-back and Cogstate subtests) and TMS-EEG (50 single pulses, 110%RMT, 0.2HZ ± 5% jitter), prior to delivery of transcranial direct current stimulation (tDCS). 20 minutes 1mA tDCS was administered to the left dorsolateral prefrontal cortex (DLPFC), with TMS-EEG and cognitive tasks repeated across multiple time-points post-tDCS.

Results: Preliminary analyses show a significant effect of time for TMS-Evoked Potentials (TEPs) in the N120 amplitude in the left frontal region (p<.01). Post-hoc analysis revealed a reduction in the T20 compared to Pre and T5 time points (ps <.05) in younger and older adults. Behavioural measures showed n-back performance improved over time. In older adults, the N120 amplitude at T20 positively correlated with reaction time on the n-back task post-tDCS (p<.05).

Discussion: Novel brain stimulation methods were used to characterise neurophysiological changes in aging and MCI. Preliminary results revealed reduction in N120, a marker of inhibition, post-tDCS in younger and older, but not MCI. Older adults who showed greater inhibition demonstrated faster reaction times on a working memory task. This suggests varied response and outcome to brain stimulation across the lifespan.

Keywords: TMS-EEG, Transcranial Direct Current Stimulation (tDCS), Cognitive Aging, Mild Cognitive Impairment (MCI)
Discussion: Contamination from these physiologic artifacts cannot be accounted for by typical control experiments (e.g. EEG changes that are dose specific). High-resolution finite element models explained artifact-based modulation of the tDCS voltage by artifact-specific impedance changes. Importantly a) physiologic artifacts are universal, they are nominally independent of device and so exist regardless of devices; b) the broadband nature of contamination may confound a range of experiments (e.g. oscillations, ERP); c) removal of artifacts requires recognition of their peculiar dynamic and individualized nature.

Keywords: tDCS, EEG, Physiological Artifacts, Computational FEMs

[0395]
ON CERTAIN POSSIBILITIES OF THE NECK NEURAL STRUCTURES NEURO-ELECTROSTIMULATION METHOD
V.S. Kublanov¹, K.Y. Retynskiy², T.S. Petrenko¹,2, A.A. Petrenko¹, ¹ Ural Federal University, Russia; ² Ural State Medical University, Russia

Introduction: We present a new non-invasive neuro-electrostimulation method of the central nervous system that affects neural structures of the neck by the field of spatially distributed current pulses.

Methods: The field of current pulses is generated in the “SIMPATHOCOR-01” device and appears between its two multi-channel electrodes. The peculiarity of this field is the coordination of its amplitude-frequency characteristics with rates of excitation conduct in the myelinated and unmyelinated nerve fibers. Targets of the field are nerve structures located in the upper third of the neck. The usage of the cervical plexus as a target for the neuro-electrostimulation allows one to stimulate the reticular formation through the spinal afferent fibers. Reticular formation is involved in the sensory processing and motor controls. Impact on the branches of the vagus and glossopharyngeal nerves allows one to influence on the central nucleus of parasympathetic regulation through afferent pathways. Stimulation of the gray matter of the brain stem is able to spread on the thalamic and striatal structures. This, in turn, will have an impact on cognitive processes, memory in particular. Stimulation of the sympathetic trunk cluster will allow to influence the sympathetic innervation of the cerebral arteries of small and medium caliber, as well as on the sympathetic spinal nucleus.

Results: The proposed system of neuro-electrostimulation is capable of modulating the autonomic processes, affecting motor control and cognitive function, activating the processes of neuroplasticity. Our previous experimental studies on laboratory rats have shown the ability to control segmental and suprasegmental levels of autonomic regulation. Subsequent clinical trials of the SPECT scans confirmed the functional and metabolic changes in brain tissues after stimulation for patients with epilepsy.

Discussion: For clarification of the neuro-electrostimulation mechanisms clinical effects it is necessary to conduct fundamental studies by means of neurovisualisation methods (fMRI, PET).

Keywords: neuro-electrostimulation, neuroplasticity, spatially distributed current pulses field

[0398]
POWER NAP STIMULATION TO ENHANCE MEMORY CONSOLIDATION IN AGING AND NEURODEGENERATIVE DISEASE
N. Küлизов, J. Ladenbauer. Charite Universitätsmedizin Berlin, Germany

Sleep-related consolidation of declarative memories, as well as associated neurophysiological events such as slow oscillatory and spindle activity, deteriorate in the course of aging. This process is accelerated in neurodegenerative disease. Slow oscillatory transcranial direct current stimulation (slow otDCS) during sleep has been shown to enhance frontal slow delta, and frontal spindle activity and in parallel improve memory consolidation in young subjects [1]. Here, we investigated whether slow otDCS applied to older adults, and to patients with mild cognitive impairment (MCI), possibly a precursor of Alzheimer’s disease, during an afternoon nap exerts similar effects.

Eighteen healthy older adults [2], and 13 patients with MCI [3], were assessed using visuo-spatial and verbal memory tasks before and after a 90-min nap either comprising weak so-tDCS at 0.75 Hz over fronto-central location or sham stimulation in a within-subject design. Electroencephalographic activity was recorded throughout the naps and immediate effects of stimulation on brain activity were evaluated. Here, spectral power within three frequency bands of interest were computed, i.e., slow oscillatory activity, slow spindle and fast spindle activity; in 1-min stimulation-free intervals following 5 stimulation blocks. So-tDCS significantly increased frontal slow oscillatory activity as well as fast spindle activity in both groups, and improved picture memory retention after sleep. This effect was significant in the healthy older group, and trend-wise (p = 0.062) in MCI patients. No significant effect was noted for verbal memories. These findings may indicate a novel strategy to counteract cognitive decline in aging in a convenient manner during brief daytime naps.

Keywords: aging, mild cognitive impairment, sleep-related memory consolidation, oscillatory tDCS

References

[0399]
LONG-TERM PAIRED ASSOCIATIVE STIMULATION - A POTENTIAL THERAPY FOR SPINAL CORD INJURY PATIENTS
A. Shulgina¹, 2, A. Zhubareva¹, 2, P. Lioumis¹, 2, E. Kirveskari¹, 2, S. Savolainen¹, A. Vilen¹, 1, J.P. Mäkelä¹, 2, 1 Helsinki University Central Hospital, Finland; 2 University of Helsinki, Finland; 3 Validia Rehabilitation Center, Finland

Introduction: Therapeutic strategies for spinal cord injury (SCI) aim at the partial sparing or restoring of the corticospinal tract (CST) - thus, approaches that strengthen the weak CST are crucial. Transparent plastic changes in CST can be induced through paired associative stimulation (PAS), the synchronization of transcranial magnetic stimulation (TMS) with electrical peripheral nerve stimulation (PNS). The TMS-PNS interstimulus interval (ISI) determines whether PAS leads to motor-evoked potential (MEP) potentiation or depression, and conventional PAS protocols require precise determination of ISIs. It was previously unknown whether PAS can have clinically relevant effects after SCI. Long-term PAS might alter conduction of neural fibers over time, and determination of ISIs in patients may be challenging. We sought to design a PAS protocol effective at wide range of ISIs, and to apply it to SCI patients.

Methods: We tested PAS consisting of high-intensity TMS and high-frequency PNS in five subjects at five different ISIs. In addition, we recruited two pilot SCI patients with motor-incomplete chronic injuries. The patients received PAS for 20–24 weeks.

Results: Our protocol induced potentiation of MEP amplitudes in all subjects at all intervals. TMS and PNS alone did not result in MEP potentiation. The paraplegic patient, paralyzed below the knee level, regained plantar-flexion and dorsiflexion of the ankles of both legs. The tetraplegic patient regained grasping ability. The newly acquired movements could be performed by the patients for at least 1 month after the last session. Our preliminary data in several additional chronic tetraplegic patients indicates that the method is effective, safe, and superior over PNS-only stimulation.

Discussion: This variant of PAS might be feasible as a rehabilitation of neurological patients. Further study is needed to confirm whether long-term PAS can be used in rehabilitation after SCI by itself and, possibly, in combination with other therapeutic strategies.

Keywords: paired associative stimulation, spinal cord injury, long-term potentiation