Brain Stimulation 6 (2013): 704-705

Marom Bikson, Jacek Dmochowski, Asif Rahman

From the articles ” Computational models of transcranial stimulation predict brain current flow patterns for dose optimization. Translational animal models aim at elucidating the cellular mechanisms of neuromodu- lation. Here we identify and define a ubiquitous assumption under- lying both computational and animal models, referred to herein as the “quasi-uniform assumption”. Though we attempt to rationalize the biophysical plausibility for the quasi-uniform assumption based on the limited electric field gradients generated during stimulation, our goal is neither to justify nor repudiate it, but rather emphasize its implicit use in a majority of modeling and animal studies. ”

Read the whole thing here


Cranial electrotherapy stimulation and transcranial pulsed current stimulation: A computer based high-resolution modeling study

Abhishek Datta, Jacek P. DmochowskiBerkan GuleyupogluMarom BiksonFelipe Fregni

Neuroimage. 2013 Jan 15;65:280-7. doi: 10.1016/j.neuroimage.2012.09.062. Epub 2012 Oct 5


► CES-induced current passes the skull and reaches cortical and subcortical areas.

► CES induced brain electric fields ranges from 0.2 to 0.6 V/m depending on the model.

► CES induced electrical current varies according to the electrode montage.

► Peak electric fields in some subcortical areas were similar to cortical regions.

► CES induced currents in the mid-brain exceed cortical values in some montages.

Download PDF CES_tPCS_model_Bikson_Neuroimage_2013

Screen Shot 2013-07-03 at 2.43.06 PM

Computational modeling of transcranial direct current stimulation (tDCS) in obesity: Impact of head fat and dose guidelines

NeuroImage: Clinical 2 (2013) 759–766

Dennis Q. Truong, Greta Magerowski, George L. Blackburn, Marom Bikson,Miguel Alonso-Alonso

Full PDF: Bikson_Obestity_Neuroimage_2013a


Recent studies show that acute neuromodulation of the prefrontal cortex with transcranial direct current stim- ulation (tDCS) can decrease food craving, attentional bias to food, and actual food intake. These data suggest po- tential clinical applications for tDCS in the field of obesity. However, optimal stimulation parameters in obese individuals are uncertain. One fundamental concern is whether a thick, low-conductivity layer of subcutaneous fat around the head can affect current density distribution and require dose adjustments during tDCS adminis- tration. The aim of this study was to investigate the role of head fat on the distribution of current during tDCS and evaluate whether dosing standards for tDCS developed for adult individuals in general are adequate for the obese population. We used MRI-derived high-resolution computational models that delineated fat layers in five human heads from subjects with body mass index (BMI) ranging from “normal-lean” to “super-obese” (20.9 to 53.5 kg/m2). Data derived from these simulations suggest that head fat influences tDCS current density across the brain, but its relative contribution is small when other components of head anatomy are added. Cur- rent density variability between subjects does not appear to have a direct and/or simple link to BMI. These results indicate that guidelines for the use of tDCS can be extrapolated to obese subjects without sacrificing efficacy and/ or treatment safety; the recommended standard parameters can lead to the delivery of adequate current flow to induce neuromodulation of brain activity in the obese population.

Screen Shot 2013-06-21 at 1.19.53 PM

-Tuesday May 21, 2012, Steinman Lecture Hall –

Please join us for a very special event at the Grove School of Engineering on Tuesday, May 21, 2013 – the 3rd Annual Kaylie Prize for Entrepreneurship at The City College of New York.   In topics ranging from using online tools to change how we wait in lines, changing paper recycling with disappearing ink, to wall-climbing robots in the subway, to innovations in medical technology, the Kaylie semi-finalist teams will compete in fast-paced presentations and physical demonstrations – culminating in the selection of a winner.

The Kaylie Prize for Entrepreneurship was established in 2010 through an endowment by alumnus Harvey Kaylie.  Mr. Kaylie is president and founder of Mini-Circuits, a Brooklyn-based RF and microwave electronic components design, manufacture, and distribution company.  The Kaylie Prize for Entrepreneurship has developed into one of the most innovative and exciting entrepreneurship mechanisms in New York City. It has facilitated rapid acceleration of commercialization of student-generated ideas. The prize is directed by Prof. Marom Bikson.

This event is an opportunity to experience an intensive one-day competition and join a network of NYC area business and engineering leaders.

 So please join us in the Steinman Lecture Hall:

3:30 pm               Opening remarks by President Coico, Mr. Kaylie and Dean Barba

3:44 pm               Introduction of teams by Prof. Marom Bikson

3:45 – 4:45 pm     Short presentations by each of the 5 teams
4:45 – 6:45 pm     Reception and judging

6:45 – 7:00 pm     Announcement of the winners by Mr. Kaylie  


Physiological and modeling evidence for focal transcranial electrical brain stimulation in humans: A basis for high-definition tDCS

Edwards_Bikson_2013_physiological+modeling evidence for 4×1 humans_edwards_2013


J. Neural Eng. 10 (2013) 036018 (10pp) doi:10.1088/1741-2560/10/3/036018
Validation of finite element model
of transcranial electrical stimulation
using scalp potentials: implications
for clinical dose

Bikson_Datta_validation model scalp potentials_2013