We have three openings tenure-track faculty positions in “Translational Neuroscience” here at CCNY encompassing clinical, basic, and computational neuroscience. The home department for each position is fairly flexible, though we envision one hire in Biomedical Engineering, one in Psychology and one in the Medical School. Joint appointments with Math, Biology, etc. are also possible. The search will consider all ranks from Assistant to Full professor.

Please also distribute this announcement to students or collaborators who may be interested.

https://home.cunyfirst.cuny.edu/psp/cnyepprd/GUEST/HRMS/c/HRS_HRAM.HRS_CE.GBL?Page=HRS_CE_JOB_DTL&Action=A&JobOpeningId=8049&Site

PRISM Lecture/Neuroscience joint talk:

“The tongue as visual surrogate: experiences with sensory substitution for blindness”

AMY C. NAU, OD, FAAO

University of Pittsburgh School of Medicine

Tuesday April 30, 2013, Time: 12:35 – 1:45 PM  Location: NAC 7/236 

Abstract: Sensory substitution is a newer concept for restoring a sense of the environment to the completely blind.  How to test performance for states of ultra low vision in the context of artificial vision, particularly those mediated through non-visual pathways is a new area of research.  This lecture will provide an overview of experiences using the BrainPort and some method to conduct objective and quantifiable assessments of behavioral performances.  In addition, preliminary results of neuroimaging studies using diffusion tensor MR imaging (DTI) and functional positron emission tomography (PET) will be shown to suggest that the visual brain becomes less organized as a function of blindness duration.

Biography: Dr. Nau is the Director of optometric and low vision services for the UPMC Eye Center, and the founder of the Sensory Substitution Laboratory at the University of Pittsburgh. She graduated from the New England College of Optometry and completed a residency in ocular disease at the VAMC in Boston. She practiced at the Beth Israel Deaconess Hospital in Boston for five years and has been at the University of Pittsburgh since 2003.  Clinically, she specializes in medical contact lenses for ocular surface and corneal disease, including scleral lenses and contacts for artificial corneas. Her research interests primarily center on artificial vision technologies for the blind, including sensory substitution. Her laboratory has conducted the largest human studies to date of the BrainPort Vision Device, which uses the tongue as a means to convey visual information to the brain.

UPDATE.  All three candidates passed the thesis defenses!  We are very proud of outstanding projects and presentations.

Showin in picture (left to right):

Prof. Simon Kelly, Prof. Lucas Parra, Marta Isabel Vanegas Arroyave (soon MS), Linford Leitch (soon MS), Dennis Truong (soon MS), Prof. Marom Bikson.

IMG_1532

 

 Friday, April 26th 2013

10:30 AM  “A novel visual stimulation paradigm: exploiting individual primary visual cortex geometry to boost steady state visual evoked potentials (SSVEP).” MS Candidate MARTA ISABEL VANEGAS ARROYAVE.  Advisor: Prof. Simon Kelly. Location: Steinman BME 5th Floor conference room

12:00 PM “Finite Element Study of transcranial Direct Current Stimulation: customization of models and montages.” MS candidate DENNNIS Q. TRUONG. Advisor: Prof. Marom Bikson, Location: Steinman Room 2M13 (floor 2M)

1:30 PM  “Design, Product Development, and Risk Assessment of Tin (Sn) ring electrodes as a substitute to Silver-Silver Chloride (Ag/AgCl) ring electrodes for High Definition – transcranial Direct Current Stimulation (HD-tDCS).” MS Candidate LINFORD LEITCH, Location: Steinman Room 2M13 (floor 2M)

3:00 PM  Picture time.  Please meet right in front of Steinman Hall and please be prompt, as we will take pictures right away (if it rains meet in Neural Engineering).  Because we have not updated our picture in years, current and PAST lab members should come.  Please spread the word to everyone (since not everyone might be on the mailing lists).   All students, volunteers, lab affiliates should come.

BiksonBrainStimulationTechDBStDCS

Prof. Marom Bikson will give a lecture “Frontiers in Neuromodulation Technologies”

at the Department of Psychology Neuroscience Center Open House and 8th Annual Psychology Research Day at the University of New Mexico

April 19, 2013

PDF of agenda and details: PCNC Open House invitation & agenda 4-2-13-2

NEW: PDF of complete presentation Frontiers_Bikson_Marom_UNM_2013_A

On YouTube: two new seminars (sorry low quality but good content) by Prof. Marom Bikson in Germany 2013.

  • March 13: Symposium at the the 10th Göttingen Meeting of the German Neuroscience Society on Non-invasive brain stimulation: mechanisms, effects and opportunities  

Video here 

Full slides DoseBikson2013

  • March 19: 5th International Conference on Non-invasive Brain Stimulation 2013. Prof. Bikson to chair the modeling workshop and also lecture on “Using computational models in tDCS research and clinical trials

Video here

Fully slides UsingModelsBikson_2013_Germany

Screen Shot 2012-12-13 at 10.42.44 PM

With Dr. Marom Bikson as PI, the CCNY Neural Engineering group was awarded a major 3 years grant from the Department of Defense (DoD) Air Force Office of Scientific Research (AFOSR).

During transcranial Direct Current Stimulation (tDCS), low-intensity DC current is applied across the scalp to enhance specific performance or training efficacy on a range of complex cognitive tasks; moreover tDCS has been suggested to produce minimal side-effects (undesired cognitive changes).  The central premise of this proposal if that tDCS achieves task-specific modulation through a cellular mechanism where only neuronal circuits primed during tDCS (for example by training) are modulated by tDCS, while none primed mechanisms are not modulated.  The specific goal of this proposal is thus to establish a cellular substrate for DCS mediated activation-specific changes.

 

New York City tDCS workshop on April 1, co-directed by Dr. Marom Bikson, hosted at Burke Rehabilitation Hospital by Soterix Medical Inc.

We will be there!  The workshop is expected to sell out so reserve a spot ASAP.

Talk by Dr. Marom Bikson, Dr. Felipe Fregni, and Dr. Dylan Awards,

Hands-on workshop on tDCS and HD-tDCS (!) plus demonstration of HDexplore and HDtargets,

Our lab will be running an hands-on modeling tutorial during one of the break-out sessions.

More details at the Soterix Medical website here 

Screen Shot 2012-12-13 at 10.42.44 PM

Screen Shot 2013-04-21 at 2.08.30 PM

PubMed link and read the PRESS RELEASE at Soterix Medical.

J Pain. 2013 Feb 14. pii: S1526-5900(12)00967-4. doi: 10.1016/j.jpain.2012.12.007. [Epub ahead of print]

Focal Modulation of the Primary Motor Cortex in Fibromyalgia Using 4×1-Ring High-Definition Transcranial Direct Current Stimulation (HD-tDCS): Immediate and Delayed Analgesic Effects of Cathodal and Anodal Stimulation.

Laboratory of Neuromodulation, Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; School of Medicine, Pontifical Catholic University of Ecuador, Quito, Ecuador.

Abstract: Fibromyalgia is a prevalent chronic pain syndrome characterized by altered pain and sensory processing in the central nervous system, which is often refractory to multiple therapeutic approaches. Given previous evidence supporting analgesic properties of noninvasive brain stimulation techniques in this condition, this study examined the effects of a novel, more focal method of transcranial direct current stimulation (tDCS), using the 4×1-ring configuration of high-definition (HD)-tDCS, on overall perceived pain in fibromyalgia patients. In this patient- and assessor-blind, sham-controlled, crossover trial, 18 patients were randomized to undergo single 20-minute sessions of anodal, cathodal, and sham HD-tDCS at 2.0 mA in a counterbalanced fashion. The center electrode was positioned over the left primary motor cortex. Pain scales and sensory testing were assessed before and after each intervention. A finite element method brain model was generated to predict electric field distribution. We found that both active stimulation conditions led to significant reduction in overall perceived pain as compared to sham. This effect occurred immediately after cathodal HD-tDCS and was evident for both anodal and cathodal HD-tDCS 30 minutes after stimulation. Furthermore, active anodal stimulation induced a significant bilateral increase in mechanical detection thresholds. These interventions proved well tolerated in our patient population. PERSPECTIVE: 4×1-ring HD-tDCS, a novel noninvasive brain stimulation technique capable of more focal and targeted stimulation, provides significant reduction in overall perceived pain in fibromyalgia patients as compared to sham stimulation, irrespective of current polarity. This technique may have other applications in research and clinical settings, which should be further explored.

Screen Shot 2012-11-10 at 3.14.30 PM

Prof. Marom Bikson to give lectures in Germany March 13, March 19

March 13: Symposium at the the 10th Göttingen Meeting of the German Neuroscience Society on Non-invasive brain stimulation: mechanisms, effects and opportunities  

Complete slides: DoseBikson2013  Complete references listed available HERE

German Neuroscience Society: conference link 

figure-2-tissue-model

March 19: 5th International Conference on Non-invasive Brain Stimulation 2013. Prof. Bikson to chair the modeling workshop and also lecture on “Using computational models in tDCS research and clinical trials

Complete slides: UsingModelsBikson_2013_Germany

conference link 

Screen Shot 2012-11-10 at 3.14.30 PM